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Abstract

This paper is concerned with solving large-scale eigenvalue problems by algebraic sub-
structuring. Algebraic sub-structuring refers to the process of applying matrix reordering
and partitioning algorithms to divide a large sparse matrix into smaller submatrices from
which a subset of spectral components are extracted and combined to form approximate
solutions to the original problem. Through an algebraic analysis, we identify critical con-
ditions under which algebraic sub-structuring works well. In particular, we observe an
interesting connection between the accuracy of an approximate eigenpair obtained through
sub-structuring and the distribution of the components of eigenvectors of a canonical matrix
pencil congruent to the original problem. A priori error bounds for the smallest eigenpair
approximation are developed. This development leads to a simple heuristic for choosing
spectral components (modes) from each sub-structure. The effectiveness of such a heuristic
is demonstrated with numerical examples. We show that algebraic sub-structuring can be
effectively used to solve a generalized eigenvalue problem arising from the finite element
analysis of an accelerator structure. One interesting characteristic of this application is
that the stiffness matrix contains a null space of large dimension. An efficient scheme to
deflate this null space in the algebraic sub-structuring process is presented.

1 Introduction

Sub-structuring is a commonly used technique for studying the static or dynamic properties
of large engineering structures [3, 8, 12, 13, 17, 18, 19, 20, 21, 28, 32, 35]. The basic idea
of sub-structuring is analogous to the concept of domain-decomposition widely used in the
numerical solution of partial differential equations [34, 30]. By dividing a large structure
model or computational domain into a few smaller components (sub-structures), one can often
obtain an approximate solution to the original problem from a linear combination of solutions
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to similar problems defined on the sub-structures. Because solving problems on each sub-
structure requires far less computational power than what would be required to solve the entire
problem as a whole, sub-structuring can lead to a significant reduction in the computational
time required to carry out a large-scale simulation and analysis.

The automated multi-level sub-structuring (AMLS) method [5, 6, 7, 22] is an extension of
a simple sub-structuring method called component mode synthesis (CMS) [12, 20] originally
developed in the 1960s. Recent studies have shown that AMLS can be used successfully in the
vibration and acoustic analysis of large-scale finite element models of automobile bodies [22,
25]. The frequency response analysis performed in these studies requires computing several
thousand eigenvalues and eigenvectors associated with a large-scale symmetric generalized
eigenvalue problem. The timing results reported in [22, 25] indicate that AMLS is significantly
faster than conventional Lanczos-based approaches [26, 16].

It is important to note that the accuracy achieved by a sub-structuring method such as
AMLS is typically lower than that achieved by the standard Lanczos algorithm. However, in
many applications, the level of accuracy required for an approximate solution to an algebraic
problem is no more than what is provided by the finite element scheme used to discretize the
original continuous problem. Thus, the use of sub-structuring is easily justified as long as the
error associated with the sub-structuring approximation does not exceed that produced by the
finite element discretization.

Asymptotic analysis is performed in [9, 10] to assess the level of accuracy attainable by the
CMS method. The analysis is based on the standard finite element theory and properties of the
partial differential equation governing the evolution of the structure. The recent work described
in [7] provides a high level mathematical description of the AMLS in a continuous variational
setting. However, neither of these studies provides a satisfactory algebraic explanation on why
sub-structuring works well in practice.

Our focus in this paper is to examine sub-structuring methods for solving large-scale eigen-
value problems from a purely algebraic point of view. We use the term algebraic sub-structuring
to refer to the process of applying matrix reordering and partitioning algorithms (such as the
nested dissection algorithm [15]) to divide a large sparse matrix into smaller submatrices from
which a subset of spectral components are extracted and combined to form an approximate so-
lution to the original eigenvalue problem. Through an algebraic manipulation, we identify the
critical conditions under which algebraic sub-structuring works well. In particular, we observe
an interesting connection between the accuracy of an approximate eigenpair obtained through
sub-structuring and the distribution of components of eigenvectors associated with a canonical
matrix pencil congruent to the original problem. Error estimate for the approximation to the
smallest eigenpair is developed. It leads to a simple heuristic for choosing spectral components
(modes) from each sub-structure. The effectiveness of such a heuristic is demonstrated with
numerical examples. Our analysis is related to but different from the recent work by Berkas
and Saad [4] who view algebraic sub-structuring as an approximation to the spectral Schur
complement method [1, 2, 11].

Our interest in algebraic sub-structuring is motivated in part by an application arising from
the simulation of the electromagnetic field associated with the next generation particle accel-
erator design [24]. We will show through a numerical example that algebraic sub-structuring
can be used effectively to compute the cavity resonance frequencies and the electromagnetic
field generated by a linear particle accelerator model. One interesting characteristic of this ap-
plication is that the stiffness matrix produced by a hierarchical vector finite elements scheme



contains a null space of large dimension. We will show how to effectively deflate this null space
in the sub-structuring calculation.

Our presentation is organized as follows. In Section 2, we give a brief overview of the
algorithmic ingredients of a simple algebraic sub-structuring method. The accuracy of the
approximate eigenpairs is analyzed in Section 3. In Section 4, we discuss how to deflate the
null space introduced by the stiffness matrix in algebraic sub-structuring. Our analysis of
algebraic sub-structuring is confirmed by numerical examples presented in Section 5. We show
in the last example that algebraic sub-structuring can be used effectively to solve generalized
eigenvalue problems arising from electromagnetic field simulations.

Throughout this paper, capital and lower case Latin letters denote matrices and vectors
respectively, while lower case Greek letters denote scalars. An n x n identity matrix will be
denoted by I,,. The j-th column of the identity matrix is denoted by e;. The transpose of a
matrix A is denoted by AT. We use ||z|| to denote the standard 2-norm of z, and use ||z||s to
denote the M-norm defined by ||z||a; = V2T Mz. We will use Z/(z,y) to denote the M-inner
product induced acute angle (M-angle for short) between z and y. This angle can be computed
from T

cos Ly (z,y) = milwy
llllar [yl as
Similarly, we use Zps(z,S) to denote the M-angle between a vector z and a subspace S. This

angle can be computed from
T
M
cos Zp(z,S) = M, (1)
[l a1
where @) is an M-orthonormal basis of the subspace S, i.e., S = span{S} and Q" MQ = I.
A matrix pencil (K, M) is said to be symmetric definite if both K and M are symmetric
and M is positive definite. A matrix pencil (K, M) is said to be congruent to another pencil
(A, B) if there exits a nonsingular matrix P, such that A = PTKP and B = PTMP.

2 Algebraic Sub-structuring

In this section, we briefly describe a single-level algebraic sub-structuring algorithm. Our
description does not make use of any information regarding the geometry or the physical
structure on which the original problem is defined.

We are concerned with solving the following generalized algebraic eigenvalue problem

Kz =AMz, (2)

where K is symmetric and M is symmetric positive definite. We assume K and M are both
sparse. They may or may not have the same sparsity pattern. Suppose the rows and columns
of K and M have been permuted so that these matrices can be partitioned as

n1 n2 n3 n1 n2 n3
n1 K11 K13 n1 Mll M13

K= n, Koy Koz and M= n Myy Mas |, (3)
n3 K%; Kg:; K33 n3 Mf;,, Mg;,, Ms33

where the labels n1, no and ng are inserted to the top and left borders of the partitioned
matrices to indicate the dimension of each sub-matrix block. The permutation can be accom-



plished by applying a matrix ordering and partitioning algorithm such as the nested dissection
algorithm [15] to the matrix K + M.

The pencils (K11, M11) and (K9, M) now define two algebraic sub-structures that are
connected by the third block rows and columns of K and M which we will refer to as the
interface block. We assume that ng is much smaller than ny and ne.

A single-level algebraic sub-structuring algorithm proceeds by performing a block factor-
ization

K =LDL", (4)
where
I, Ky
L= I, and D = Koo
KLEL KRKsy Ing Kss
The last diagonal block of D, often known as the Schur complement, is defined by
Kss = K33 — KEK ' K13 — KL K3 Kos.

The inverse of the lower triangular factor L defines a congruent transformation that, when
applied to the matrix pencil (K, M), yields a new matrix pencil (K, M):

R . My M/:B
K=L'KL'=D and M=L"'MLT= Moy Mys |- (5)
ML ML My

The off-diagonal blocks of M satisfy
Mis = Mz — MyK;'Ky3, for i=1,2.

The last diagonal block of M satisfies

2
Mss = Msz — Y (KLK;'Mis + MEK; ' Kis — KRK ;' My K;; ' Kis).
i=1

The pencil (I? M ) is often known as the Craig-Bampton form [12] in structure engineering.

Note that the eigenvalues of (I? , M ) are identical to those of (K, M), and the corresponding

eigenvectors 7 are related to the eigenvectors of the original problem (2) through z = L% z.
The sub-structuring algorithm constructs a subspace in the form of

k1 k2 ns
ni Sl
S = n2 SQ (6)

ns In,

where S; and Sy consist of k1 and ko selected eigenvectors of (Ki1,Mi1) and (Koo, Mas)
respectively. These eigenvectors will be referred to as sub-structure modes in the discussion
that follows. Note that k1 and ko are typically much smaller than n; and ns, respectively.
The approximation to the desired eigenvalues and eigenvectors of the pencil (I/(\' , M ) are
obtained by projecting the pencil (I/(\' , M ) onto the subspace spanned by S, i.e., we seek 6 and
g € RF1+k24n3 gych that .
(STKS)q=0(S"MS)q. (7)

4



It follows from the standard Rayleigh-Ritz theory [29, page 213] that 6 serves as an approxi-
mation to an eigenvalue of (K, M), and the vector formed by z = L~ Sq is the approximation
to the corresponding eigenvector.

A summary of the single-level algebraic sub-structuring algorithm described in this section
is provided below.

Algorithm: Single-level Algebraic Sub-structuring

Input: A matrix pencil (K, M), where K = KT and M = MT > 0;
Output: §; € Rand z; € R, (j =1,2,..., k) such that Kz; ~ ;M z;.

1. Order K and M to be in the form of (3)
Perform block factorization K = LDL”
3. Compute a subset of eigenpairs of the sub-structures (K;1, My1) and

(K99, Mys). The eigenvectors of each sub-structure form the columns
of S1 and Ss respectively;

4. Project the matrix pencil (K, M) into subspace spanned by columns
of Z = L~1S where S is defined by (6);
5. Compute k desired eigenpairs (6;,q;) from (ZT K Z, ZT M Z), and set

Zj = ZQj (j = 1,2,...,]{2);

A few remarks are in order.

e Note that the most expensive computational task associated with this algorithm is the
block factorization K = LDL” and the congruent transformation of M required for
projecting M into the subspace spanned by Z = L~7S. These computational tasks
must be carried out with care in order to reduce memory requirements and floating point
operations. However, it is beyond the scope of this paper to discuss these important
implementation issues.

e Since k1 <€ n1 and ko < ng, Step 4 of the algorithm can be carried out by using a
shift-invert Lanczos algorithm to obtain a small number of desired eigenpairs from each
sub-structure. The cost of this computation is generally small compared to the rest of
the computation, especially when this algorithm is extended to a multi-level scheme.

e Similarly, because ng is typically much smaller than n; and ns, the dimension of the
projected problem (7) is significantly smaller than that of the original problem. Thus,
the cost of solving (7) is also small compared to Steps 2 and 3 of the algorithm.

e Decisions must be made on how to select eigenvectors from each sub-structure. The
selection should be made in such a way that the subspace spanned by the columns of Z
retains a sufficient amount of spectral information from (K, M). The process of choosing
appropriate eigenvectors from each sub-structure will be referred to as mode selection. We
will postpone the discussion on this key aspect of the algebraic sub-structuring algorithm
until the next section.

The algebraic sub-structuring algorithm presented in this section can be extended in two
ways. First, the matrix reordering and partitioning scheme used to create the block structure



of (3) can be applied recursively to (K11, M11) and (K2, Mas) respectively to produce a multi-
level division of (K, M) into smaller sub-matrices. The reduced computational cost associated
with finding selected eigenpairs from these even smaller sub-matrices further improves the
efficiency of the algorithm. Second, one may replace I, in (6) with a subset of eigenvectors
of the interface pencil (1?33, 1\733). This modification will further reduce the computational
cost associated with solving the projected eigenvalue problem (7). A combination of these two
extensions yields the AMLS algorithm presented in [22, 7]. However, we will limit the scope
of our presentation to a single level sub-structuring algorithm in this paper.

3 Accuracy and Error Estimation

Algebraic sub-structuring allows one to break a large-scale eigenvalue problem into a set of
smaller sub-problems that are easier to solve. The algorithm would be less attractive to use if
one has to compute all eigenvalues and eigenvectors of each sub-problem. Fortunately, such a
calculation is not necessary as we will show in this section. In practice, only a small subset of
the eigenvectors of (K11, M11) and (Kag, M) are needed to assemble the projection subspace
spanned by the columns of the matrix S in (6). To simplify the analysis, we will work with the
matrix pencil (I? M ), where K and M are defined in (5). As we noted earlier, (I? M ) and

(K, M) have the same set of eigenvalues. If Z is an eigenvector of (I? , M ), then z = L~T7 is
an eigenvector of (K, M), where L is the transformation defined in (4).
Let (pg-z),vj(-z)) be the j-th eigenpair of the i-th sub-problem, i.e.,
Kii")]('Z) = uy)Miivy),
where ’UJ(-i) is M;;-orthonormal, i.e., (Uj(-i))TMii'u,(j) = d; ;- To simplify our discussion, we assume
that ugz) has been ordered such that
p) <) <<l (®)

Let us define V; = (’UY) vg) v,(fi)), V = diag(Vi, Vo, In,) and A; = diag(ugi),ug), e ,u,(fg) An
eigenvector of (K, M), say T, can be expressed as a linear combination of columns of V. That
is,
Vi U
T=Vy= Va v |, 9)
In3 s

where y = (y1,yd,y3)7 is an eigenvector of the following generalized eigenvalue problem

Ay Y1 I, Gi3 Al
A2 N Y2 = Ing 9\23 Y2 ) (10)
K33 Y3 Gi, GY, Ms; Y3

where Gi3 = VT M3 and Ga3 = Vi Mys. Note the matrix pencil defined by (10) can be
obtained by applying V7 from the left to K7 = AMz and expressing T by Z = Vy. This
pencil is clearly congruent to the pencils (I/{' , M ) and (K, M). Thus they share the same set
of eigenvalues. We will refer to (10) as a canonical form of the generalized eigenvalue problem

(2)-



If Z can be well approximated by a linear combination of the columns of S, as suggested by
the description of the the algorithm in Section 2, then the vectors y; and y» must contain only
a few large entries. All other components of y; and yy are likely to be small and negligible. In
this section, we seek to formalize this key concept by developing a priori error bounds for the
approximations to the smallest eigenvalue of (I? , M) and the corresponding eigenvector. As
we will see below, these bounds can be expressed in terms of the small components of y; and
Y2-

Suppose A; — A, is nonsingular, for ¢ = 1,2. It follows from the first two block rows of
the canonical eigenproblem (10) that

yi = A(A; — A1) ™' Gigys, (11)
Consequently, we can express the j-th element of y; by

i 1 i
Al =, (12)
My —A K /A—1

where ggi) =

large provided |g\”| is bounded from below. On the other hand, if u

e]TGigyg. It is easy to see from (12) that, when |ujz)/)\| ~ 1, \e]Tyi| will be relatively
.
and if |¢\"| is bounded from above, |¢7y;| will be relatively small. Thus, if A is surrounded
by a few eigenvalues of (Kj;, My;), and if S; contains only the eigenvectors associated with
these eigenvalues, one would expect to obtain an accurate approximation to A by solving the
projected problem (7).

To make the above statements more precise, we introduce some additional notation. Let
us define

is far away from M,

Ak
w— A

pk(w) = ’ (13)

where A\ is the k-th eigenvalue of (K, M). If |g](-i)| € [1,72] for some modest sized constants

v1 < 72, then pk(,ug-i)) provides a reliable measure for |eJTyZ~|.

It is easy to verify that

(i) () (i)
J

pe(pii1) < pr(py”)  for puy” > Ay

and
(@)

(i) N i)
J

Pep;”’) < pr(pgie)  for pyiy < A

These inequalities suggest that pk(uy)), and therefore |e;‘pyi\, is relatively large when ,ug-z) is
sufficiently close to Ag.

Let us now focus on the special case in which k¥ = 1, i.e., the case associated with the
smallest eigenvalue. Because (Kj;, M;;) represents the restriction of the pencil (K, M) to a

subspace, all of its eigenvalues satisfy

A <) < A
Consequently, the inequality
o) = pr () > - > pr () (14)

7



holds. Suppose k; < n; is the smallest integer such that p; (u,(c?ﬂ) < 7 for some 7 < 1, then

we can assert, under the assumption
| g](-i)| <7, for some small constant -y,

that |e§1yi| is relatively small for all § > k;. This assertion follows directly from (14) and the
observation made in (12). Hence, if our goal is to seek an accurate approximation to A; by

projecting (I? , M ) into a subspace S spanned by the columns of

k1 k2 ns
ni [ S1
S = n2 SQ ) (15)

ns I,

it is natural to set .S; to include only the leading k; columns of V.

Given this choice of subspace, it remains to be shown how much accuracy one can expect
from the approximate eigenvalue and eigenvector obtained by applying the Rayleigh-Ritz pro-
cedure to S. To simplify our discussion, let us assume that A; is simple. Suppose 6; is the
smallest eigenvalue of the projected problem

(STKS)q = 60(STMS)q,

and ¢; is the corresponding eigenvector. We will now quantify the accuracy of the Ritz pair
(61,u1), where u; = Sq1, by providing a priori error bounds for both 61 — A1 and Z43(Z1,u1)
in terms of small elements of y; and y2. Note that Z7(Z1,u1) is the M-inner product induced
angle (between Z and u;) defined in Section 1.

To develop these error bounds, we use the following theorem, which is a generalization of
a similar theorem associated with a standard symmetric eigenvalue problem [31, 33].

Theorem 1 Let K, M € R™*" be symmetric matrices and M be positive definite. Suppose the
eigenpairs of (K, M), (N, x;), have been ordered so that

AL < A < < Ay

If (0;,u;), 1 = 1,2,...,k, are Ritz pairs associated with a k-dimensional subspace S ordered so
that
01 <0y <--- < b,

then
01—\ < (A — Ap)sin? Zy(21,S), (16)
An — A1 .
sin Zpr(u1,z1) < Lsin Zyu(z1,S), (17)
g — A1

where Zpr(u1,x1) denotes the M-angle between the vectors 1 and uy, and Zp(x1,S) denotes
the M-angle between x1 and the subspace S.

The proof of Theorem 1 is included in the Appendix. The theorem suggests that the
accuracy of the desired Ritz pair is determined largely by the M-angle between the exact
eigenvector Z; and the subspace S from which the Ritz pair is extracted. We now focus on
seeking a bound for sin Z (71, S). The following theorem, which is a generalization of a similar
theorem in [36, page 250], provides a useful characterization for sin Z (71, S).



Theorem 2 Let x be a vector with ||z||pr = 1 and let S be a subspace. Then
sin Zps(z,8) = min ||z — w|| -
weS

Theorem 2 suggests that we can provide a bound for sin Z+(Z1,S) by measuring the

distance between 77 and a particular choice of a vector w € S that is “close” to 71 in M-norm.
Our choice of such a vector w € § is made as follows. We define ; (i = 1,2) by

T .
TA_ — ej Yi fOI' J S ki’ 18
€ i {0 for ki < j < ni, (18)
where y; satisfies
Aq Y1 In, Gi3 Y1
Ay y2 | = A1 In,  Go3 y2 |- (19)
K3s Y3 Gl, GI, Ms; Y3
It is easy to verify that
W Y1
w= Vo yo | € S =span{S}.
I Y3

For this particular choice of w, we can easily show that

Vi hi
?If‘\l —w = ‘/2 h2 )
I 0

where h; = y; — y; for i« = 1,2. Consequently, we have

I G13 hy
121 —wl|% = (b h3 0) I Gy ho | = hThy + hiho.
Gl Gl M 0

Hence, we can now conclude that

sinZ (71, S) = min 1Z1 — wllgz < \/h] k1 + h ho. (20)

Note that the vector w is essentially obtained from (9) by truncating components associated
with the trailing n; — k; elements of y;. These elements are typically small, and they form the
non-zero entries of h;.

Combining (16) and (17) with (20), we obtain the following result.

Theorem 3 Let K and M be matrices defined in (5). Let (N, Z;) (i =1,2,...n) be eigenpairs
of the pencil (I?, J/\/_f\), ordered so that A\ < Ay < --- < Ay. Let (6;,u;) (1 = 1,2,....,k) be the
Ritz pairs associated with a k-dimensional subspace S spanned by the columns of S defined in
(15), ordered so that 01 < 0y < --- < 0. Then

01— M < (A — M) (AT hy + hihy), (21)

. . An — A1
sin Z+(u1,#1) < )\Z v \/h{ b1 + BT ho, (22)

where h; = y; — Ui, and y;, U; (i =1,2) are defined by (19) and (18) respectively.




Theorem 3 indicates that the accuracy of (6, u1) is proportional to the size of AT hy +hZ hy,
a quantity that provides a cumulative measure of the “truncated” components in (9). Similar a
priori error estimates can be made for other Ritz pairs by utilizing a generalization of Theorems
4.5 and 4.6 in [31, pp 135-136] which are developed for standard eigenvalue problems. However,
to keep our presentation concise, we will not pursue this type of error estimate in this paper.

To end this section, we provide an estimate for hY h; + hi'hy that is independent of the
number of non-zero elements in h; and hy. Note that the nonzero elements of h; are those
elements of y; associated with

p1(u§-Z)) <7<

If |gJ(-Z)| <« for some moderate sized constant -y, then it follows from (12) that each individual
(%) (%)
J J
we can establish a bound for hz-Thi in terms of 7 under some mild conditions.
()

J

element of h; is either zero or tiny. Moreover, since p; (') decreases rapidly as u;’ increases,

To simplify our notation, we will drop the superscript of y
eigenvalues p; of (Kj;, M;;) are distinct and

in the following. Suppose the

jlgi,g(ujﬂ — pj) > 6,

for some constant § > 0. Then it is easy to show that

ng ng
hihi = Y (efhi)(efhi) = > pius)(e] Gisys)®
j=ki+1 J=kit+1
U 72 Un;
< [ > P%(Mj)]?ﬂf 7/ pi (w)dw
j=k;i+1 Phs+1

_ (A1v)? ( 1 1 )
4 P41 — >‘1 Mn; — A1 )

Note that pn; is typically much larger than A;. Thus the term 1/(u,, — A1) in the above
expression is negligible. Hence,

A17)? 1 A1y? A2
Ty < 1 — )< :
hZ h’l = 5 ,u/ki—|—1 _ )\1 5 pl(:ukrFl) = (5 T

Combining (23) with inequalities (21) and (22) stated in Theorem 1, we obtain

b= (= ) (2an), (23)
A1
in/—(31,u) < /A An =21 /5 (24)
S v\ ZnLur) = 1 Ay — A aT,

where o = 72/4.

We should mention that the presence of multiple (or tightly clustered) eigenvalues of
(Kii, M;;) does not alter the qualitative measure of the bounds established in (23) and (24).
In that case, we can simply replace the definition of § with the minimum distances between
two adjacent eigenvalue clusters and multiply the bounds by the largest multiplicity of the
eigenvalues of (Kj;, Mj;).

10



We should also emphasize that (23) and (24) merely provide a qualitative estimate of the
error in the Ritz pair (61, u1) in terms of the threshold 7 that may be used as a heuristic in
practice to determine which spectral components of a substructure should be included in the
subspace S defined in (15). It is clear from these inequalities that a smaller 7, which typically
corresponds to a selection of more spectral components from each substructure, leads to a more
accurate Ritz pair (01, u1).

4 Null Space Deflation

The LDLT factorization performed in Step 2 of the algebraic sub-structuring algorithm shown
in Section 2 relies on the assumption that K is non-singular. When K is singular, one may
choose to work with the shifted eigenvalue problem

(K —oM)z=(A—o0)Mz,

where o is a non-zero shift, if the null space of (I? M ) cannot be easily identified.

However, if the null space of (K, M) has a special structure and a basis of the null space
can be constructed easily, it may be advantageous to deflate this null space in the sub-structure
calculation.

In this section, we discuss how to modify the sub-structuring algorithm to handle a special
case in which K is singular and the null space of K can be easily identified. This special case
arises when we apply a special hierarchical vector finite element discretization scheme [37] to
a standard 3-D homogeneous vector wave equation employed in linear accelerator modeling
and simulation [24]. Once the partial differential equation is discretized, the stiffness matrix
K corresponding to the curl-curl operator often contains many zero rows and columns. If we
reorder K to move all the non-zero rows and columns into the leading block of the matrix and
apply the same permutation to M, the generalized eigenvalue problem (2) can be partitioned

as
K1 0 T1\ _ My Mg T
(o o) ()= e ) (3) @)

The hierarchical vector finite element discretization scheme developed in [37] ensures that
the non-zero block K7j; is symmetric positive definite. The dimension of the (2,2) blocks of
K and M, which we will denote by m, is typically much smaller than that of the (1,1) block.
But it can be as large as n/4, where n is the dimension of K. The null space of K does not
contain any physically interesting information. It is purely an artifact of the discretization.
We are only interested in the non-zero eigenvalues and the corresponding eigenvectors.

It is easy to show that the non-zero eigenvalues of (K, M) can be obtained by solving the
reduced problem .

Kllxl = )\Mnl‘l, (26)

where -7/\/[\11 = My — M12M2_21M17;. The z2 component of the eigenvector associated with
(K, M) can be recovered by
Ty = My ML z1. (27)

The null space of K is automatically deflated in such a scheme.
However, because M is generally dense, we cannot apply algebraic sub-structuring to
(K11, Mi1). Instead, we choose to work with K and M directly. If we simply apply the nested

11



dissection ordering to K + M to obtain the block structure shown in (3), both Kj; and Koo
may contain zero rows and columns.

Since we cannot form K iq?:K i ! when Kj; is singular, we replace K i ! with the pseudo-inverse
of K;; in (4). If we reorder K by moving all nonzero rows and columns of Kj; to the leading

portion of this submatrix, i.e.,
A; 0
K’L - ( 0 O ) ’

where A; is non-singular, then the pseudo-inverse of the reordered Kj; is simply

AL o
KL:( : 0).

Applying the congruent transformation defined by

I,
L™ 1= I,
~KLKl ~KRKl, I,

to the reordered K yields a block diagonal matrix K in the form of (5). The diagonal blocks
of M = L='ML™T can be partitioned conformally to give

([ Bi C;
MZ_(CiT Dz‘)'

The nonzero eigenvalues and corresponding eigenvectors of the i-th subproblem

<Ai 0)(1%’):”(2')( B; Ci)<pi)
0 0 qi ¢l D, qi
can be computed by solving the following reduced problem
Aipi = p(B; - G:D; ' Cf )pi. (28)

When a shift-invert Lanczos algorithm with a zero shift is applied to (28), one does not need
to form the Schur complement B; —C;D; 1CZ-T explicitly. If A; and D; can be easily factored by a
sparse direct method, then the matrix vector operations w < A; v and w < (B;—C;D; *C)v,
which are required at each step of the Lanczos algorithm, can be carried out efficiently with a
few sparse matrix vector multiplications and sparse triangular solves.

Deflation may also be necessary for computing the non-zero eigenvalues and the corre-
sponding eigenvectors of the projected problem (7) when the null vectors of (Kj;, M;;) are
included in S;. Suppose K =STKS and M = STMS. If the null space of (K;;, Mj;), which
can be easily constructed in this case, is included in S;, we can permute the rows and columns
of (I? , M) to obtain the projected eigenvalue problem

EDO-(HE)E e
where K 11 contains only the non-zero rows and columns of K.
Again, the non-zero eigenvalues of (29) can be computed more efficiently by working with

the reduced problem _ . .
Ki1p = 0(My; — Mo My, M1,)p.

The g-component of the eigenvector can be recovered from q = —]TJ;_; M Lp.
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5 Numerical Experiments

We present a few numerical examples in this section to illustrate the effectiveness of the single-
level algebraic sub-structuring algorithm presented in Section 2. These examples also confirm
the analysis carried out in Section 3. All experiments are performed in MATLAB. The desired
eigenpairs of all pencils are computed by using the MATLAB eigs function. For illustration
purposes, we computed more eigenvalues and eigenvectors of each subproblem than we actually
need in the following experiments. In practice, one would only need to compute a selected
number eigenpairs of (Kj;;, M;;) incrementally.

5.1 Example 1 - BCS structural dynamics

The matrices used in this example, BCSSTK09 and BCSSTMO09, are part of the Harwell-
Boeing BCS sparse matrix collection [14]. These matrices originated from a dynamic analysis
of a clamped plate. The dimensions of these matrices are n = 1083. The non-zero pattern
of the stiffness matrix K is shown in Figure 1. The pattern on the left corresponds to the
original K. The one on the right corresponds to a reordered K obtained after the METIS
[23] software is used to dissect the matrix into two main sub-structures coupled by a small
separator (interface block). The two sub-structures of the reordered K are identical. The
dimension of each sub-structure is n; = ny = 513. The separator contains only 57 rows and
columns. The mass matrix M is diagonal in this example. Applying the same reordering to
M does not change its structure.

0
100
200
300
4001 400
500 500
600 600
700 700
800 800
900 900

1000 1000

0 200 400 600 800 1000 0 200 400 600 800 1000

nz = 18437 , nz = 18437

Figure 1: The non-zero pattern of BCSST K09 before and after it is ordered by METIS.

The spectra of the original matrix pencil (K, M) and the sub-structure pencils (Kj;;, M;;)
(1 = 1,2) are shown in Figure 2. There is a large gap between the 361st and the 362nd
eigenvalues of (K, M). Similar gaps are present in the spectra of (Kj;, M;;). In this example,
the eigenvalues of interest are the ones at the left end of the spectrum. Naturally, we would
select the eigenvectors associated with the smallest eigenvalues of (Kj;, M;;) to construct the
subspace (6) required in Step 5 of the single-level algebraic sub-structuring algorithm.

To determine how many eigenvectors of (Kj;, M;;) we should include in the subspace rep-
resented by (6), we examine the p-factor defined in (13). It follows from the discussion in
Section 3 that one may develop a selection scheme by setting a threshold value 7 for pq, i.e.,

13
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Figure 2: The spectra of the pencils (K71, Mi1), (Ka2, Mys) and (K, M) associated with the
BCS example.

one can choose sub-structure modes that satisfy

(i) > 7,
for some small 7. However, since the computation of p; requires the knowledge of exact
A1 which we do not have in advance, a more practical scheme is perhaps to compute an
approximate p-factor by replacing A\; in (13) with an approximate eigenvalue o.

We use 0 = min(ugl), u§2)) /2 in all of our experiments, and define

(30)

w—a

In Figure 3, we plot both p; (u(l)) and py (ugl)). (Because the two sub-structures in this

J
problem are identical, /)1(/15-2)) = pl(ug-l)) and py (ug-Q)) =D (ugl)). Thus we only plot the p-

factor associated with the first sub-structure.) The figure clearly shows that there is essentially
no qualitative difference between p; (ugl)) and ﬁl(ugl)). Both decrease rapidly as ug-l) increases.
There is a clear gap between p; (N§17)1) and p; (pg%) A similar gap is observed between p; (N§17)1)
and ﬁl(,ug%) These gaps reflect the gaps observed in the spectrum of (Ki1, M11).

Several choices of 7 values (listed in Table 1) have been tried. The analysis performed in
Section 3 indicates that the smaller the value of 7 the more accurate the smallest Ritz pair
should be. This prediction is confirmed in Figure 4 where we plot the relative errors of the
smallest 50 Ritz values extracted from three subspaces constructed by using these different
choices of 7 values. Notice that with the choice of 7 = 10~#, which corresponds to selecting
the leading 171 eigenvectors from each sub-structure to form the matrix S; required in (15),
01 exhibits roughly 10 digits of accuracy.

Even though our error estimates presented in Section 3 is targeted only at (01, u1), Figure 4
shows that the improvement in the accuracy of other Ritz values is also proportional to the
decrease of 7.

In this example, the least upper bound for the elements of g(i) used in (12) is roughly
v = 0.28. Hence, p; (uy)) provides a reliable upper bound for the magnitude of ejTyZ- (1 =

14
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Figure 3: The exact (marked by asterisks) and the approximate (marked by circles) p-factors
associated with the first sub-structure of the BCS problem. The exact p-factor is defined by
(13), and the approximate p-factor is defined by (30).
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Figure 4: The relative error of the smallest 50 Ritz values extracted from three subspaces
constructed by using different choices of the p-factor thresholds (7 values) for the BCS problem.
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1,2), where (y7,y2,yT)T is the eigenvector associated with the smallest eigenvalue (\;) of the
canonical eigenvalue problem (10).

10°
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* A
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£ - * Ky K
K ko PR
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ol *, * * * **
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10’20 1 1 1 1 1

0 100 200 300 400 500 600

J

Figure 5: The magnitude of ejryl (left) and ejryg (right), where (y1,y2,y3)T is the eigenvector
corresponding to the smallest eigenvalue of the canonical problem (10) associated with the
BCS example.

Judging from the small magnitude of p; (pg-z)) for j > 171, which is less than 1075, we
predict the magnitude of e]Tyi, 1 = 1,2, to be tiny for § > 171. This is indeed the case as is
demonstrated in Figure 5 where we plot |e]Ty1| (The plot for 4 is identical). We observe that
lefyi1| < 2x 10710 for all j > ki = 171. This observation, when used in conjunction with
Theorem 3, provides a clear explanation for the high accuracy of 6; displayed in Figure 4.

Table 1 further illustrates the connections between the mode selection threshold 7, the
number of modes selected from each substructure (k;), the relative accuracy of #; and the
error estimates established in Theorem 3. Note that the relative error bound listed in the last
column of Table 1, which is calculated directly from the right hand side of (21), tends to be

somewhat pessimistic. However, it does provide a qualitative estimate for the relative accuracy
of 91.

‘ T ‘ k; ‘ (01 — A1)/ ‘ relative error bound ‘
1072 ] 18 | 1.4x107* 3.4 x 100
10°3] 84 | 20x10°° 6.4 x 1073
107% 171 | 1.2x 1072 42 x 10712

Table 1: The effect of 7 on the number of selected modes associated with the BCS problem,
the relative accuracy of the smallest Ritz value and the relative error bound defined by (21).

It is interesting to see from Figure 5 that among the first 171 elements of both y; and o,
many have magnitudes less than 107'9. This observation suggests that one may potentially
reduce the dimension of the subspace (6) by excluding eigenvectors of (Kj;;, M;;) that are
associated with these small entries from S;. We will pursue this idea further in a follow up
paper on mode selection strategies.

We will end this example by pointing out that the large gap between the leading 361 eigen-
values of (K, M) and the rest of the spectrum is a highly favorable feature of this problem. This
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gap, which also manifests itself in the p-factor plots displayed in Figure 3, allows an algebraic
sub-structuring algorithm to easily construct a subspace that contains accurate approximations
to the leading 361 eigenvalues of (K, M). Figure 6 shows that by setting k; = 171, the leading
361 Ritz values extracted from the subspace S spanned by columns of (15) all have at least 7
digits of accuracy.

10°

10° F

HM HHU)’ M0

-8
o
o

I I I I I I I
0 50 100 150 200 250 300 350 400
i

Figure 6: The relative error of the smallest 361 approximate eigenvalues associated with the
BCS problem.

5.2 Example 2 - Disk brake squeal prediction

In this example, we consider a generalized eigenvalue problem Kx = AMz arising from the
simulation of disk brake squeal [27]. The matrices K and M are generated by a finite element
discretization of a disk brake model. The dimensions of these matrices are n = 3954. The
mesh used in the finite element discretization has been ordered to yield a stiffness matrix K
that has the sparsity pattern shown in Figure 7. The leading diagonal block forms the first
sub-structure. Its dimension is n; = 2853. The second diagonal block, which is much smaller in
size but denser in terms of the non-zero pattern, forms the second sub-structure. Its dimension
is mo = 975. These two sub-structures are connected by a separator that contains 126 rows
and columns. The mass matrix M is diagonal in this example.

We will illustrate that the algorithm presented in Section 2 works equally well on the
sub-structures produced directly from the finite element mesh partition.

The spectra of (K, M) and (K;;, M;;), i = 1,2, are shown in Figure 8. We are interested in
the smallest eigenvalues of (K, M). The smallest 6 eigenvalues of (K, M), which are consider-
ably smaller than the largest eigenvalue, correspond to rigid body motions. These rigid body
motions are not deflated in advance in the following calculation.

We observe from the p-factor plot in Figure 9 that p; (ug-l)) > ,’o\g(u?)), for small j’s. This
observation suggests that eigenvectors associated with the smallest eigenvalues of (Kj1, M11)
may play a more important role than those of (Koo, Mog) for constructing the subspace S
defined in (15). This inference is confirmed in Figure 10 where we plot the magnitude of
each element of y;, ¢ = 1,2. The first few elements of y; are much larger than those of ¥, in
magnitude. But |ejTy1| eventually decreases rapidly as j increases.
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Figure 7: The non-zero pattern of the stiffness matrix K associated with the disk brake
structure.
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Figure 8: The spectra of the pencils (K, M), (K11, M11) and (Koo, M) associated with the
brake structure.
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Figure 9: The approximate p-factors associated with each sub-structure of the disk brake
structure.
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Figure 10: The magnitude of e?yl (left) and eJTyQ (right), where (y¥,y2', y1)T is the eigenvector
corresponding to the smallest eigenvalue of the canonical problem (10) associated with the disk

brake structure.
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We experimented with using three different choices of 7 values (listed in Table 2) for

selecting sub-structure modes that satisfy ’p\l(ugl)) > 7. Table 2 shows that, with 7 = 1073,
only 14 eigenvectors are selected from the first sub-structure, and none are selected from the
second structure. The smallest Ritz value obtained from the subspace (15) constructed by
these eigenvectors has roughly 6 digits of accuracy. Although the smallest 6 Ritz values and
the corresponding Ritz vectors are not physically interesting, our experiment demonstrates
that they can be computed accurately by our sub-structuring algorithm using a sub-space
containing only 140 basis vectors.

Figure 11 shows that decreasing the value of 7 does not further improve the accuracy of
the Ritz values associated with the rigid body motion. However, a smaller 7 value does lead to
significant improvement in the accuracy of the Ritz values associated with non-rigid vibrations.
When 7 is set to 10~°, which corresponds to selecting 185 modes from the first sub-structure
and 22 modes from the second sub-structure, the relative errors of the smallest 50 Ritz values
all have at least 3 digits of accuracy.

10°

IA-BJ/A|

1=10 °, k =14, k_=0
— 1 2

=107 k=45, k=2

=107, k=185, k =22
—%— 1 2

0 é 1‘0 1.5 2‘0 2‘5 3“0 3‘5 4‘0 4‘5 50
i
Figure 11: The relative error of the smallest 50 Ritz values extracted from three subspaces

constructed by using different choices of the p-factor thresholds (7 values) for the disk brake
problem.

‘ T ‘ k1 ‘ ko ‘ (01 — A1)/ M ‘ relative error bound ‘

103|140 ] 72x1077 42 x 1071
1074 45 | 2| 22x10°8 1.4 x 1073
107° | 185 [ 22 | 7.3 x10°8 2.3 x107°

Table 2: The effect of 7 on the number of selected modes associated with the disk brake
problem, the relative accuracy of the smallest Ritz value and the relative error bound defined
by (21).

5.3 Example 3 - Short traveling wave accelerating structure

We show in this example that algebraic sub-structuring can be used to compute approximate
cavity resonance frequencies and the electromagnetic field associated with a small accelerator
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structure. The matrix pencil used in this example is obtained from a finite element model of
a five-cell traveling wave accelerating structure. The three dimensional geometry of the model
is shown in Figure 12. The model contains three cavity cells and two couplers. The dimension

Figure 12: The finite element model corresponding to a 5-cell traveling wave accelerating
structure.

of the pencil (K, M) is n = 1898. The stiffness matrix K has 336 zero rows and columns.
As we mentioned in Section 4, these zero rows and columns are produced by a particular
hierarchical vector finite element discretization scheme. In order to deflate the null space of
(K, M) associated with these zero rows and columns, which has no physical significance, we
perform the following two-stage matrix reordering:

e A single-level dissection is applied to K + M first using the METIS [23] software. The
dissection produces two sub-structures of sizes n; = 995 and no = 887 respectively. These
sub-structures are connected by a small separator (an interface block) which contains
only 16 rows and columns. The K37 block of the permuted K contains 175 zero rows and
columns, the K9 block contains 157 zero rows and columns, and K33 block contains 6
zero rows and columuns.

e The non-zero rows and columns of Ki;, K99 and K33 are permuted to the leading blocks
of these submatrices. The matrix M is permuted accordingly.

The non-zero patterns of the permuted K and M are displayed in Figure 13.

The distribution of the non-zero eigenvalues of (K, M) is shown in Figure 14. We are
interested in the smallest non-zero eigenvalues which appear to be relatively well separated
from the large end of the spectrum. In addition to the spectrum of (K, M), we also plot the
spectra of (K;;, M;;) (1 = 1,2) in the Figure 14. Notice that the spectra of both sub-structures
show a similar distribution pattern to that of (K, M).

We plot the p-factors associated with smallest eigenvalue of the deflated problem in Fig-
ure 15. We observe that the p-factors associated with this example decrease at a somewhat
slower rate. Three different choices of 7 values were used as the thresholds (7 = 0.1,0.05,0.01)
for selecting sub-structure modes. The relative accuracy of the 50 smallest non-zero Ritz values
extracted from the subspaces constructed with these choices of 7 values is displayed in Figure
16.
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Figure 13: The non-zero pattern of the permuted stiffness matrix K (left) and the mass matrix
M (right) associated with the traveling wave accelerating structure.
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Figure 14: The spectra of the pencils (K11, Mi1), (K22, Mas) and (K, M) associated with the
traveling wave accelerating structure.
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Figure 16: The relative error of the smallest 50 Ritz values extracted from three subspaces
constructed by using different choices of the p-factor thresholds (7 values) for the traveling

wave accelerating problem.
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We observe that with 7 = 0.1, 8; has roughly four digits of accuracy, which is quite sufficient
for this particular discretized model. If we decrease 7 down to 0.01, most of the smallest 50
non-zero Ritz values have at least 8 digits of accuracy.

The least upper bound for g](-z) used in (12) is v = 0.02. Thus the p-factor gives an over-
estimate of |e?y,<| in this case. In Figure 17, we plot |e?y1| and |e§1y2|, where (y1,y3,y3)T
is the eigenvector associated with the smallest non-zero eigenvalue of (10). For simplicity, we
excluded the values of |e§1y1| and |e]Ty2| corresponding to the null space of (Kj1, M11) and

(K22, M22), which have been deflated from our calculations (See Section 4). We observe that
|eJTyi| is much smaller compared to p; (uy)), and it decays much faster than the p-factor also.

10° r r r r r r r r 107

Iy, 01

b
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0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800
i i

Figure 17: The magnitude of e?yl (left) and e?yg (right), where (y¥,yd', y1)T is the eigenvector
corresponding to the smallest eigenvalue of the canonical problem (10) associated with the
traveling wave accelerating structure.

We conclude this example by listing the mode selection threshold 7, the number of modes
selected from each sub-structure (k;), the relative accuracy of #; and the error estimate com-
puted directly from the right-hand side of (21) in Table 3.

‘ T ‘ k1 ‘ ko ‘ (01 — A1)/ M ‘ relative error bound ‘

0.1 | 18 ] 19 | 1.4x10* 1.7 x 103
0.05| 51 | 56 | 1.2x10°° 2.6 x 1074
0.01 | 325361 | 2.4x%x10°8 2.5 x 1076

Table 3: The effect of 7 on the number of selected modes associated with the traveling wave

accelerating structure, the relative accuracy of the smallest Ritz value and the relative error
bound defined by (21).

6 Concluding Remarks
A purely algebraic analysis of a single-level sub-structuring algorithm for large-scale eigenvalue

calculation is developed in this paper. By applying a sequence of special congruent transforma-
tions to (K, M), we turn the original generalized eigenvalue (2) into a canonical problem (10)
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with a simpler structure. We observed that the desired eigenvector y of the canonical problem
(10) often contains only a few large entries. The magnitude of these entries ultimately deter-
mines which eigenvectors (modes) of each sub-structure should be included in the subspace (6)
from which approximations to the eigenpairs of (K, M) are extracted. All other sub-structure
modes can essentially be truncated from (9) without sacrificing the required level of accuracy
in our approximation. We provided an explicit a priori error estimate for the smallest Ritz
pair in terms of the small components of y that are truncated from (9). We also suggested a
practical way to estimate the magnitude of each component of y by exploiting its relationship
with the “p-factor” defined in (13). This estimation leads to a practical way for selecting
sub-structure modes by specifying a threshold value 7 for the p-factor. We showed that the
accuracy of smallest Ritz pair is proportional to the size of 7 under some mild conditions. A
number of numerical examples are provided to confirm our theoretical analysis. Moreover, we
demonstrated that an algebraic sub-structuring algorithm can be an effective tool for comput-
ing cavity resonance frequencies and the electromagnetic field generated by a linear accelerator
structure.

Our analysis of a simple algebraic sub-structuring algorithm can be extended to a multi-
level setting. Our error estimate can be made for non-extreme Ritz pairs as well. These topics
will be pursued in our future research. Another interesting area that would require further
research is the development of a better strategy for selecting sub-structuring modes.

Our presentation has focused on the theoretical aspects of the algebraic sub-structuring
algorithm. Implementation details and comparsion of a multi-level algebraic sub-structuring
algorithm with other methods for large-scale eigenvalue computation will be reported else-
where.

Appendix

For completeness purpose, we provide a proof for Theorem 1 in this section. Theorem 1 is an
extension of Theorem 2.1 in [33], which we will restate below.

Theorem 4 Let A be a symmetric matriz with eigenpairs (\;,z;), ordered so that
AM <X <...< A1 < M-

Suppose (0;,u;) are Ritz pairs formed by applying the Rayleigh-Ritz procedure to a subspace V
spanned by V € R**k_ If these Ritz pairs are ordered so that

01 <0y <...< 0,

then
01— M < (An— i) sin? Z(z1,V), (31)
sin Z(u1,z1) < A= At sin Z(z1, V). (32)
A2 — A1

Proof of Theorem 1: The Ritz values 0; (i = 1,2, ..., k) are the eigenvalues of the projected

problem
(STKS)qg=6(STMS)q (33)
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where the columns of S forms a basis for S. Let g; be the i-th generalized eigenvector of (33)
associated with #;. Then the i-th Ritz vector u; is defined by u; = Sg;.

Suppose M = RT R is the Cholesky factorization of M, where R is upper triangular. If we
define Z = RSQ, where

Q=(q192 --- k),
then it follows from the S” M S-orthogonality of ¢; that

zZ'7 = I.

Solving the generalized eigenvalue problem (2) is equivalent to solving the following stan-
dard eigenvalue problem
R TKR 'y =)y, (34)

where y = Rz.
Applying the standard Rayleigh-Ritz procedure to (34) from the subspace spanned by Z
yields the following projected eigenvalue problem

ZTRTTKR 'Zg = 0y. (35)
It is easy to show that
ZTRTKR™'Z = diag(6:,0o,...,0%).

Moreover, since the eigenvectors of (35) are simply g; = e;, for i = 1,2, ..., k, the Ritz vectors
associated with (34) are z; = Zg; = RSQe; = Ru;, for i = 1,2, ..., k.
It follows from Theorem 4 that

61— A < (A — ) sin? Z(y1, 2) (36)
sin /(z1,y1) < An = M1 sin Z(y1, Z) (37)
A2 — M

where 1; is the eigenvector of (34) corresponding to the smallest eigenvalue \; and Z =
span{Z} = span{RSQ} = span{RS}.

Note that y; = Rxi, where z; is the eigenvector of (2) corresponding to the smallest
eigenvalue A\i. Thus,

cos Z(z1,y1) = leyl = (Rul)TRxl = ulTMxl = cos Zpr(u1,x1).
Furthermore, it is easy to verify that W = S@Q is M-orthonormal, i.e.,
WIMW = QTSTMSQ = I.

Hence,
cos Z(y1, Z) = |ly{ Z|| = [|(Rz1)"RSQ| = ||l MW || = cos Ly (1, S).

where § = span{S}. Thus, we can now replace Z(z1,y1) and Z(y1, Z) with Zps(u1,z1) and
Zp(ug,8S) respectively in (36) and (37) to reach the conclusions stated in Theorem 1.
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